Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(2,2'-bipyridine- $\kappa^2 N, N'$)cadmium(II) bis(perchlorate) hemihydrate

Weiguang Zhang,* Zhengjing Jiang and Lude Lu

Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

Correspondence e-mail: zhangweiguang650@sohu.com

Received 4 November 2008; accepted 7 November 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.034; wR factor = 0.107; data-to-parameter ratio = 14.0.

The asymmetric unit of the title compound, $[Cd(C_{10}H_8N_2)_3]$ - $(ClO_4)_2 \cdot 0.5H_2O$, consists of one complex $[Cd(bpy)_3]^{2+}$ cation (bpy = 2,2'-bipyridine), two perchlorate anions and one water molecule with half-occupancy. The central cadmium(II) ion is bound to six N atoms from three bpy ligands in a distorted octahedral coordination, with Cd-N bond distances ranging from 2.304 (3) to 2.395 (2) Å.

Related literature

For applications of metal complexes of 2,2'-bipyridine and its derivatives, see: Kuang *et al.* (2006). For cadmium complexes, see: Kundu *et al.* (2005); Ranjbar *et al.* (2007); Shi *et al.* (2006); Zheng *et al.* (2005).

Experimental

Crystal data

 $\begin{bmatrix} Cd(C_{10}H_8N_2)_3](ClO_4)_2 \cdot 0.5H_2O & \gamma = 100.520 (1)^{\circ} \\ M_r = 788.87 & V = 1568.68 (11) Å^3 \\ Triclinic, P\overline{1} & Z = 2 \\ a = 8.1704 (3) Å & Mo K\alpha radiation \\ b = 11.0282 (5) Å & \mu = 0.93 \text{ mm}^{-1} \\ c = 18.3875 (7) Å & T = 173 (2) \text{ K} \\ \alpha = 104.631 (1)^{\circ} & 0.20 \times 0.16 \times 0.12 \text{ mm} \\ \beta = 92.652 (1)^{\circ} \\ \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector	19563 measured reflections
diffractometer	6067 independent reflections
Absorption correction: multi-scan	5114 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.037$
$T_{\min} = 0.82, \ T_{\max} = 0.90$	

Refinement

ł

v

S

6

$R[F^2 > 2\sigma(F^2)] = 0.034$	434 parameters
$vR(F^2) = 0.107$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
067 reflections	$\Delta \rho_{\rm min} = -0.54 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-N4	2.304 (3)	Cd1-N3	2.329 (3)
Cd1-N2	2.312 (3)	Cd1-N5	2.383 (3)
Cd1-N6	2.330 (3)	Cd1-N1	2.395 (2)

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the National Natural Science Foundation of China (grant No. 50572039) and the Natural Science Foundation of Jiangsu Province (BK2006199).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2440).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kuang, D., Klein, C., Snaith, H. J., Moser, J.-E., Humphry-Baker, R., Comte, P., Zakeeruddin, S. M. & Gratzel, M. (2006). Nano Lett. 6, 769–773.

Kundu, N., Mandal, D., Chaudhury, M. & Tiekink, E. R. T. (2005). Appl. Organomet. Chem. 19, 1268–1270.

Ranjbar, Z. R., Morsali, A. & Zhu, L.-G. (2007). J. Coord. Chem. 6, 667–676. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Acta Cryst. E62, m2094-m2095.

Zheng, S.-T., Zhang, J., Xu, J.-Q. & Yang, G.-Y. (2005). J. Solid State Chem. 178, 3740–3746.

Acta Cryst. (2009). E65, m7 [doi:10.1107/81600536808036593]

Tris(2,2'-bipyridine- $\kappa^2 N, N'$) cadmium(II) bis(perchlorate) hemihydrate

W. Zhang, Z. Jiang and L. Lu

Comment

Metal complexes of 2,2'-bipyridine and its derivatives have several applications, for example, in dye-sensitized solar cells (Kuang *et al.*, 2006). Among these reported complexes, only a few structurally characterized examples are of cadmium ion (Kundu *et al.*, 2005; Ranjbar *et al.*, 2007; Shi *et al.*, 2006; Zheng *et al.*, 2005). For these cadmium complexes, the coordination scheme gives rise to monomeric species. Here we report a new monomeric cadmium(II) complex, *viz.* the title compound, $[Cd(C_{10}H_8N_2)_3](ClO_4)_2.0.5H_2O$ (I).

The structure of (I) consists of monomeric $[Cd(bpy)_3]_{2+}$ cations (bpy = 2,2'-bipyridine) and perchlorate anions and non-coordinating water molecules. The cadmium(II) ion is bound to six nitrogen atoms from three bpy ligands, giving a distorted CdN₆ octahedral geometry. Of the six Cd—N bond distances ranging from 2.304 (3) to 2.395 (2) Å, the two *cis* bonds, Cd1—N1 and Cd1—N5, are longer than the other four bonds. The three 2,2'-bipyridine ligands are bent, with dihedral angles between the mean planes of two pyridine rings of the same bipyridine ligand ranging from 11.0 (2) to 27.6 (2)°.

Experimental

The title complex was obtained as light red crystals by the hydrothermal reaction of $Cd(ClO_4)_2.6H_2O$ (0.10 mmol) and 2,2'-bipyridine (0.10 mmol) in water (7 ml) at 160°C for 48 hr.

Refinement

H atoms bonded to O atoms of water molecules were located in a difference map and refined with O—H bonds = 0.85 Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model, with C—H bonds = 0.95 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Tris(2,2'-bipyridine- $\kappa^2 N$,N') cadmium(II) bis(perchlorate) hemihydrate

Crystal data

$[Cd(C_{10}H_8N_2)_3](ClO_4)_2 \cdot 0.5H_2O$	Z = 2
$M_r = 788.87$	$F_{000} = 794$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.670 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.1704 (3) Å	Cell parameters from 5350 reflections
b = 11.0282 (5) Å	$\theta = 2.3 - 24.2^{\circ}$
c = 18.3875 (7) Å	$\mu = 0.93 \text{ mm}^{-1}$
$\alpha = 104.631 \ (1)^{\circ}$	T = 173 (2) K
$\beta = 92.652 (1)^{\circ}$	Block, light red
$\gamma = 100.520 \ (1)^{\circ}$	$0.20 \times 0.16 \times 0.12 \text{ mm}$
$V = 1568.68 (11) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	6067 independent reflections
Radiation source: fine-focus sealed tube	5114 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 173(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -9 \rightarrow 10$
$T_{\min} = 0.82, \ T_{\max} = 0.90$	$k = -13 \rightarrow 13$
19563 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Seco
Least-squares matrix: full	Hyd sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-at
$wR(F^2) = 0.107$	w =
<i>S</i> = 1.01	(Δ/σ
6067 reflections	Δho_m
434 parameters	$\Delta \rho_m$
Primary atom site location: structure-invariant direct	

methods returned at the focation: structure-invariant direct Extin

econdary atom site location: difference Fourier map ydrogen site location: inferred from neighbouring tes -atom parameters constrained $v = 1/[\sigma^2(F_o^2) + (0.0692P)^2]$ here $P = (F_o^2 + 2F_c^2)/3$ $a/\sigma)_{max} = 0.001$

$\Delta \rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3}$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cd1	0.49907 (3)	0.73554 (2)	0.243298 (12)	0.03097 (10)	
N1	0.6598 (3)	0.6830 (2)	0.33902 (14)	0.0294 (6)	
N2	0.6508 (3)	0.5860 (2)	0.18631 (14)	0.0301 (6)	
N3	0.3534 (3)	0.7832 (3)	0.14562 (14)	0.0322 (6)	
N4	0.6676 (3)	0.8972 (3)	0.20701 (14)	0.0317 (6)	
N5	0.2893 (3)	0.5889 (3)	0.28060 (15)	0.0343 (6)	
N6	0.3367 (3)	0.8481 (3)	0.32562 (14)	0.0336 (6)	
C1	0.7042 (3)	0.5700 (3)	0.31281 (16)	0.0275 (6)	
C2	0.7179 (4)	0.4891 (3)	0.35877 (18)	0.0348 (7)	
H2	0.7476	0.4086	0.3390	0.042*	
C3	0.6876 (4)	0.5275 (3)	0.43375 (19)	0.0402 (8)	
Н3	0.6949	0.4733	0.4661	0.048*	
C4	0.6469 (4)	0.6444 (4)	0.46057 (19)	0.0399 (8)	
H4	0.6284	0.6735	0.5122	0.048*	
C5	0.6330 (4)	0.7198 (3)	0.41210 (17)	0.0336 (7)	
Н5	0.6034	0.8006	0.4310	0.040*	
C6	0.7320 (4)	0.5340 (3)	0.23180 (17)	0.0280 (6)	
C7	0.8391 (4)	0.4527 (3)	0.20353 (19)	0.0373 (8)	
H7	0.8951	0.4154	0.2360	0.045*	
C8	0.8633 (4)	0.4266 (3)	0.1278 (2)	0.0411 (8)	
H8	0.9369	0.3718	0.1077	0.049*	
C9	0.7789 (4)	0.4813 (3)	0.08131 (19)	0.0398 (8)	
H9	0.7934	0.4651	0.0290	0.048*	
C10	0.6737 (4)	0.5596 (3)	0.11315 (18)	0.0352 (7)	
H10	0.6146	0.5965	0.0815	0.042*	
C11	0.4207 (4)	0.8910 (3)	0.12777 (17)	0.0312 (7)	
C12	0.3271 (5)	0.9441 (4)	0.0842 (2)	0.0444 (9)	
H12	0.3754	1.0210	0.0723	0.053*	
C13	0.1647 (5)	0.8857 (4)	0.0582 (2)	0.0491 (9)	
H13	0.0998	0.9217	0.0282	0.059*	
C14	0.0970 (4)	0.7748 (4)	0.07580 (19)	0.0447 (9)	
H14	-0.0149	0.7320	0.0580	0.054*	
C15	0.1953 (4)	0.7269 (3)	0.12003 (19)	0.0414 (8)	

Cd1	0.03118 (15)	0.03525 (17)	0.03679 (15)	0.01384 (10)	0.01081 (10)	0.02177
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Atomic displace	ement parameters	(\AA^2)				
117D	0.3080	0.1001	0.274	ı U.	.070	0.50
HOR	0.4323	0.2135	0.212.	0. 1 0.	090*	0.50
НОЛ	0.4144 (9)	0.1033 (0)	0.2310	5 0.	.0752 (17) 000*	0.50
0	0.7200(4) 0.4144(0)	0.1005(2) 0.1855(6)	0.3400	(13) 0.	.0039 (0) .0752 (10)	0.50
08	0.9241(3) 0.7206(4)	0.2243(3) 0.1863(2)	0.441	0.(15) 0.	.0558 (7)	
07	0.0449(3)	0.2223(3) 0.2243(3)	0.403	52(17) = 0. 50(15) = 0.	.0003 (8)	
05	0.1219(3)	0.0310(2)	0.405	20(13) 0	.0400 (0)	
05	0.73289(11) 0.7270(2)	0.10380(8)	0.4120	01(3) 0	0188 (6)	
C12	0.101/(4) 0.75280(11)	0.2129(3)	0.0800	5(2) 0	0380 (2)	
04	0.3387(0) 0.1617(4)	0.2297(4) 0.2120(2)	-0.01	50(10) 0	(14)	
02	0.3397 (5)	0.2792(3)	-0.01	150(10) 0.	1051 (14)	
02	0.2000(4)	0.4107(3) 0.2702(2)	0.071	(10) 0.	0590 (7)	
01	0.30913(10) 0.2886(A)	0.20250(8) 0.4107(3)	0.0030	32(7) 0.	0558 (7)	
C11	0.30015 (10)	0.28250 (8)	0.313	(4)	03444 (19)	
C30 H30	0.3449(3) 0.4317	1 0209	0.330	2(2) 0.	.0434 (9)	
C30	0.2398	0.0735(4)	0.381	+ 0.	0/3/(0)	
H20	0.2321 (0)	1.0301 (+)	0.375	1 0	070*	
C20	0.0298	1.0098 1.0361(4)	0.433	² 0.	0.075°	
U28	0.1078 (3)	1 0008	0.4030	3(2) 0.	075*	
C28	0.0124	0.7901	0.414	$\mathbf{r} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$.005	
H27	0.0124	0.3387 (3)	0.375	$\mathcal{O}(2) = \mathcal{O}(2)$	065*	
C20	0.2137(4) 0.0983(4)	0.8389 (5)	0.395	(17) 0	0543 (11)	
C26	0.3432 0.2157 (4)	0.4270 0.7800 (3)	0.224	1 0	0357 (8)	
H25	0.2881 (4)	0.4048 (3)	0.2050	3(2) 0	.0430 (9)	
C25	0.2092	0.2981	0.2950	$(2) \qquad 0$	0/50 (9)	
H24	0.2102 (3)	0.2081	0.205	0	073*	
C24	0.0002	0.3973 (4)	0.400	3(3) 0	.075	
H23	0.1333 (3)	0.3916	0.30).	1 0	079*	
C23	0.1353 (5)	0.0000	0.428.	3(2) 0	.002	
С22 H22	0.1302 (4)	0.3700 (4)	0.383	7(2) 0	.0515 (11)	
C21	0.2114(4) 0.1262(4)	0.0420(3)	0.3400	$J_{0}(17) = 0$	0505(8)	
H20	0.8769	0.9030	0.267	$1 \qquad 0.$.049*	
C20	0.8297 (4)	0.9392 (3)	0.2314	+2 (19) 0.	.0409 (8)	
H19 C20	1.0400	1.0550	0.2244	+ 0.	.030*	
U19	0.9301 (4)	1.0308 (4)	0.207	/ (2) 0.	.0408 (9)	
H18	0.9249	1.1541	0.142.	5 0	.007*	
U18	0.8591 (5)	1.08/2 (4)	0.158	S(2) = 0	.0555 (11)	
HI/	0.6415	1.0839	0.0990	5 0	.056*	
	0.6922 (5)	1.0456 (4)	0.133	1 (2) 0.	.0464 (9)	
C16	0.5991 (4)	0.94/6(3)	0.1568	84 (17) 0.	.0330(7)	
HI5	0.1485	0.6505	0.1329	$\theta = 0$.050*	
1110	0 1 40 5	0.6505	0.122		0.50*	

U^{11}	$U^{}$	U^{**}	U^{1-}	U^{**}	U^{-*}
0.03118 (15)	0.03525 (17)	0.03679 (15)	0.01384 (10)	0.01081 (10)	0.02177 (11)
0.0266 (13)	0.0319 (15)	0.0321 (13)	0.0070 (11)	0.0015 (10)	0.0123 (11)
0.0314 (14)	0.0286 (14)	0.0346 (14)	0.0091 (11)	0.0050 (11)	0.0136 (11)
	0.03118 (15) 0.0266 (13) 0.0314 (14)	0.1 0.2 0.03118 (15) 0.03525 (17) 0.0266 (13) 0.0319 (15) 0.0314 (14) 0.0286 (14)	0.02 0.02 0.02 0.03118 (15) 0.03525 (17) 0.03679 (15) 0.0266 (13) 0.0319 (15) 0.0321 (13) 0.0314 (14) 0.0286 (14) 0.0346 (14)	0.02 0.02 0.02 0.02 0.03118 (15) 0.03525 (17) 0.03679 (15) 0.01384 (10) 0.0266 (13) 0.0319 (15) 0.0321 (13) 0.0070 (11) 0.0314 (14) 0.0286 (14) 0.0346 (14) 0.0091 (11)	0.01 0.02 0.02 0.02 0.02 0.03118 (15) 0.03525 (17) 0.03679 (15) 0.01384 (10) 0.01081 (10) 0.0266 (13) 0.0319 (15) 0.0321 (13) 0.0070 (11) 0.0015 (10) 0.0314 (14) 0.0286 (14) 0.0346 (14) 0.0091 (11) 0.0050 (11)

Cd1—N4		2.304 (3)	C13–	-H13	0.95	00
Geometric pa	rameters (A, °)					
	0					
09	0.103 (3)	0.073 (4)	0.000 (4)	0.043 (4)	0.018 (3)	0.050 (5)
00	0.109(2) 0.105(5)	0.0407(10) 0.075(4)	0.0478(13)	0.0232(10)	-0.0003(13)	0.0195(13)
07	0.0423(14)	0.0619 (18)	0.061/(1/)	-0.0040(13)	0.0091(12)	0.0235(14)
06	0.0511 (16)	0.0616 (18)	0.0702 (19)	0.0283 (14)	0.0178 (14)	0.0060 (15)
05	0.0504 (15)	0.0356 (14)	0.0681 (17)	0.0119 (11)	0.0114 (13)	0.0242 (13)
CI2	0.0446 (5)	0.0342 (5)	0.0418 (4)	0.0122 (4)	0.0064 (4)	0.0137 (4)
04	0.0405 (16)	0.090 (3)	0.167 (4)	0.0002 (16)	0.0150 (19)	0.087 (3)
03	0.184 (4)	0.103 (3)	0.0511 (19)	0.082 (3)	0.038 (2)	0.0193 (19)
02	0.0509 (16)	0.0511 (17)	0.080 (2)	0.0109 (13)	-0.0190 (14)	0.0257 (15)
01	0.0639 (18)	0.0448 (16)	0.0671 (18)	0.0208 (14)	0.0003 (14)	0.0238 (14)
CII	0.0324 (4)	0.0375 (5)	0.0363 (4)	0.0062 (3)	0.0032 (3)	0.0155 (3)
C30	0.043 (2)	0.040 (2)	0.048 (2)	0.0144 (16)	-0.0003 (16)	0.0095 (17)
C29	0.075 (3)	0.057 (3)	0.047 (2)	0.041 (2)	-0.010 (2)	0.003 (2)
C28	0.053 (3)	0.103 (4)	0.041 (2)	0.050 (3)	0.0073 (18)	0.011 (2)
C27	0.0343 (19)	0.097 (4)	0.0361 (19)	0.026 (2)	0.0081 (15)	0.016 (2)
C26	0.0251 (16)	0.056 (2)	0.0271 (15)	0.0074 (15)	0.0023 (12)	0.0129 (15)
C25	0.043 (2)	0.039 (2)	0.051 (2)	-0.0024 (16)	-0.0087 (16)	0.0181 (17)
C24	0.061 (3)	0.047 (2)	0.071 (3)	-0.018 (2)	-0.025 (2)	0.035 (2)
C23	0.050 (2)	0.088 (4)	0.054 (3)	-0.028 (2)	-0.015 (2)	0.044 (3)
C22	0.0375 (19)	0.074 (3)	0.0388 (19)	-0.0165 (19)	-0.0037 (15)	0.0289 (19)
C21	0.0248 (16)	0.053 (2)	0.0295 (16)	-0.0026 (14)	-0.0019 (12)	0.0162 (15)
C20	0.041 (2)	0.038 (2)	0.0427 (19)	0.0066 (16)	0.0029 (15)	0.0106 (16)
C19	0.0372 (19)	0.045 (2)	0.053 (2)	0.0009 (16)	0.0099 (16)	0.0086 (18)
C18	0.059 (3)	0.042 (2)	0.065 (3)	-0.0041 (19)	0.023 (2)	0.020 (2)
C19	0.054 (2)	0.044(2)	0.048(2)	0.0041 (17)	0.0139(17)	0.025/(1/)
C10 C17	0.0432(18)	0.0288(17)	0.0329(10)	0.0102(14)	0.0127(14)	0.0155(14)
C15	0.0425 (19)	0.039(2)	0.0441 (19)	0.0038(15)	0.0010(15)	0.01/9(16)
C14	0.036/(19)	0.056(2)	0.0426 (19)	0.0150(17)	-0.0029(15)	0.0124(17)
C13	0.055(2)	0.054(2)	0.049 (2)	0.0261 (19)	-0.0013(17)	0.0233(19)
C12	0.053(2)	0.042(2)	0.047(2)	0.0158 (17)	0.0025(17)	0.0229(17)
C12	0.0402 (18)	0.0288(17)	0.0295 (15)	0.0120 (14)	0.0088(13)	0.0123(13)
C10	0.0399 (18)	0.0368 (19)	0.0338(17)	0.0095 (15)	0.0081(14)	0.0103(14)
C10	0.048 (2)	0.038(2)	0.0345(17)	0.0082 (16)	0.0124 (15)	0.0109 (15)
	0.0415 (19)	0.0353 (19)	0.048 (2)	0.016/(15)	0.0110 (15)	0.0067 (16)
	0.0389 (18)	0.0336(18)	0.0431(18)	0.0155 (15)	0.0008(14)	0.011/(15)
C0 C7	0.0260 (15)	0.0258(16)	0.0349 (16)	0.0062 (12)	0.0033(12)	0.0120(13)
	0.0330(17)	0.0354 (19)	0.0342(16)	0.0093(14)	0.0040(13)	0.0104(14)
C4	0.0398 (19)	0.052(2)	0.0304(16)	0.0107(10)	0.0043(14)	0.0142(10)
	0.044(2)	0.044(2)	0.0403(18)	0.0098 (16)	0.0021(15)	0.0245(16)
C2	0.0365(17)	0.0321(18)	0.0413(18)	0.0024 (14)	0.0049 (14)	0.0155(15)
	0.0245(15)	0.0203 (16)	0.0332(15)	0.0059 (12)	0.0013(12)	0.0115(13)
	0.02/6(13)	0.0422(17)	0.0334(14)	0.0115(12)	0.0054(11)	0.0108(12)
IND NG	0.0298 (14)	0.0376(17)	0.0343(14)	-0.0015(12)	-0.0016(11)	0.0144 (12)
IN4	0.0332(14)	0.0316(15)	0.0331(14)	0.0070(11)	0.0079 (11)	0.0123(12)
N3	0.0347 (14)	0.0329 (15)	0.0339 (14)	0.0088 (12)	0.0074 (11)	0.0158 (12)
N12	0.0247(14)	0.0220(15)	0.0220 (14)	0.0000(12)	0.0074(11)	0.0159(12)

Cd1—N2	2.312 (3)	C14—C15	1.377 (5)
Cd1—N6	2.330 (3)	C14—H14	0.9500
Cd1—N3	2.329 (3)	С15—Н15	0.9500
Cd1—N5	2.383 (3)	C16—C17	1.380 (5)
Cd1—N1	2.395 (2)	C17—C18	1.375 (5)
N1—C1	1.340 (4)	С17—Н17	0.9500
N1—C5	1.343 (4)	C18—C19	1.382 (6)
N2—C10	1.332 (4)	C18—H18	0.9500
N2—C6	1.341 (4)	C19—C20	1.356 (5)
N3—C15	1.334 (4)	С19—Н19	0.9500
N3—C11	1.341 (4)	C20—H20	0.9500
N4—C20	1.337 (4)	C21—C22	1.384 (5)
N4—C16	1.341 (4)	C21—C26	1.471 (5)
N5—C25	1.325 (4)	C22—C23	1.368 (6)
N5—C21	1.349 (4)	С22—Н22	0.9500
N6—C30	1.336 (4)	C23—C24	1.362 (7)
N6—C26	1.342 (4)	С23—Н23	0.9500
C1—C2	1.390 (4)	C24—C25	1.389 (5)
C1—C6	1.481 (4)	C24—H24	0.9500
C2—C3	1.384 (5)	C25—H25	0.9500
С2—Н2	0.9500	C26—C27	1.395 (5)
C3—C4	1.367 (5)	C27—C28	1.375 (6)
С3—Н3	0.9500	С27—Н27	0.9500
C4—C5	1.378 (5)	C28—C29	1.376 (6)
C4—H4	0.9500	C28—H28	0.9500
С5—Н5	0.9500	C29—C30	1.374 (5)
C6—C7	1.391 (4)	С29—Н29	0.9500
С7—С8	1.380 (5)	С30—Н30	0.9500
С7—Н7	0.9500	Cl1—O3	1.398 (3)
C8—C9	1.389 (5)	Cl1—O4	1.404 (3)
С8—Н8	0.9500	Cl1—O2	1.425 (2)
C9—C10	1.374 (5)	Cl1—O1	1.425 (3)
С9—Н9	0.9500	Cl2—O6	1.422 (3)
C10—H10	0.9500	Cl2—O5	1.427 (3)
C11—C12	1.384 (4)	Cl2—O8	1.430 (3)
C11—C16	1.492 (4)	Cl2—O7	1.444 (3)
C12—C13	1.370 (5)	O9—H9A	0.8500
C12—H12	0.9500	O9—H9B	0.8500
C13—C14	1.370 (5)		
N4—Cd1—N2	92.41 (9)	C11—C12—H12	120.0
N4—Cd1—N6	101.98 (10)	C12-C13-C14	119.3 (3)
N2—Cd1—N6	162.88 (10)	С12—С13—Н13	120.4
N4—Cd1—N3	71.23 (9)	С14—С13—Н13	120.4
N2-Cd1-N3	106.18 (9)	C13—C14—C15	118.3 (3)
N6—Cd1—N3	87.41 (9)	C13-C14-H14	120.8
N4—Cd1—N5	170.37 (9)	C15-C14-H14	120.8
N2—Cd1—N5	96.17 (10)	N3—C15—C14	122.8 (3)
N6—Cd1—N5	70.34 (10)	N3—C15—H15	118.6
N3—Cd1—N5	102.03 (9)	C14—C15—H15	118.6

N4—Cd1—N1	107.32 (9)	N4-C16-C17	120.7 (3)
N2—Cd1—N1	70.96 (9)	N4-C16-C11	116.7 (3)
N6—Cd1—N1	95.64 (9)	C17—C16—C11	122.6 (3)
N3—Cd1—N1	176.86 (8)	C18—C17—C16	119.4 (4)
N5—Cd1—N1	79.74 (9)	С18—С17—Н17	120.3
C1—N1—C5	118.7 (3)	С16—С17—Н17	120.3
C1—N1—Cd1	111.40 (18)	C17—C18—C19	119.4 (4)
C5—N1—Cd1	121.4 (2)	C17—C18—H18	120.3
C10—N2—C6	119.4 (3)	C19—C18—H18	120.3
C10—N2—Cd1	123.3 (2)	C20—C19—C18	118.1 (3)
C6—N2—Cd1	116.9 (2)	С20—С19—Н19	120.9
C15—N3—C11	119.1 (3)	С18—С19—Н19	120.9
C15—N3—Cd1	123.0 (2)	N4—C20—C19	123.1 (3)
C11—N3—Cd1	116.1 (2)	N4—C20—H20	118.4
C20—N4—C16	119.1 (3)	С19—С20—Н20	118.4
C20—N4—Cd1	123.3 (2)	N5-C21-C22	121.2 (4)
C16—N4—Cd1	117.5 (2)	N5-C21-C26	116.2 (3)
C25—N5—C21	118.0 (3)	C22—C21—C26	122.5 (3)
C25—N5—Cd1	122.9 (2)	C23—C22—C21	120.0 (4)
C21—N5—Cd1	114.7 (2)	C23—C22—H22	120.0
C30—N6—C26	119.6 (3)	C21—C22—H22	120.0
C30—N6—Cd1	122.2 (2)	C24—C23—C22	118.9 (4)
C26—N6—Cd1	117.6 (2)	С24—С23—Н23	120.5
N1—C1—C2	121.6 (3)	С22—С23—Н23	120.5
N1—C1—C6	116.5 (3)	C23—C24—C25	118.6 (4)
C2-C1-C6	121.8 (3)	C23—C24—H24	120.7
C3—C2—C1	119.0 (3)	C25—C24—H24	120.7
С3—С2—Н2	120.5	N5-C25-C24	123.2 (4)
C1—C2—H2	120.5	N5—C25—H25	118.4
C4—C3—C2	119.0 (3)	C24—C25—H25	118.4
С4—С3—Н3	120.5	N6—C26—C27	120.6 (4)
С2—С3—Н3	120.5	N6—C26—C21	117.1 (3)
C3—C4—C5	119.4 (3)	C27—C26—C21	122.2 (3)
C3—C4—H4	120.3	C28—C27—C26	119.5 (4)
C5—C4—H4	120.3	С28—С27—Н27	120.2
N1—C5—C4	122.2 (3)	С26—С27—Н27	120.2
N1—C5—H5	118.9	C27—C28—C29	119.0 (4)
C4—C5—H5	118.9	C27—C28—H28	120.5
N2—C6—C7	120.9 (3)	C29—C28—H28	120.5
N2—C6—C1	116.6 (3)	C30—C29—C28	119.1 (4)
C7—C6—C1	122.5 (3)	С30—С29—Н29	120.4
C8—C7—C6	119.4 (3)	С28—С29—Н29	120.4
С8—С7—Н7	120.3	N6—C30—C29	122.2 (4)
С6—С7—Н7	120.3	N6—C30—H30	118.9
C7—C8—C9	119.2 (3)	С29—С30—Н30	118.9
С7—С8—Н8	120.4	O3—Cl1—O4	110.3 (3)
С9—С8—Н8	120.4	O3—Cl1—O2	110.4 (2)
C10—C9—C8	118.1 (3)	O4—Cl1—O2	108.31 (19)
С10—С9—Н9	120.9	O3—Cl1—O1	109.2 (2)

С8—С9—Н9	120.9	O4—Cl1—O1	108.11 (19)
N2—C10—C9	123.0 (3)	O2—Cl1—O1	110.55 (16)
N2—C10—H10	118.5	O6—Cl2—O5	110.51 (17)
С9—С10—Н10	118.5	O6—Cl2—O8	109.87 (19)
N3—C11—C12	120.6 (3)	O5—Cl2—O8	109.15 (16)
N3—C11—C16	116.4 (3)	O6—Cl2—O7	108.97 (17)
C12-C11-C16	123.0 (3)	O5—Cl2—O7	109.12 (16)
C13—C12—C11	120.0 (3)	O8—Cl2—O7	109.20 (17)
С13—С12—Н12	120.0	Н9А—О9—Н9В	108.6

